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ON THE DIMENSION OF ATTRACTORS FOR A CLASS OF DISSIPATIVE SYSTEMS* 

1u.s. IL'IASHENKO and A.N. CHETAEV 

The paper gives an estimate for the Hausdorff dimension of a global attractive set 
in a multidimensional problem of pursuit, in terms of the dimension of the pursued 
manifold. In addition a general result of estimating from above the Hausdorff and 

entropic dimension of the attractor is obtained for a wide class of dissipative 

systems. 

1. Formulation of the problem. Attractors and the dimensionality. The multi- 

dimensional problem of pursuit appears in the theory of large scale biological systems, in 

particular in constructing a model of a respiratory center /l-33/. The problem is motivated 

in the above articles and is formally stated as follows. Let RN be an Euclidean space, AC 
RN is a compact n-dimensional manifold with, perhaps, an edge, and f is Cl-smooth mapping 

RN-w A. The dynamic system 

5' = f (5) - z (1.1) 

represents the multidimensional problem of pursuit. The name describes the fact that a point 

z(t) moving along a phase trajectory is pursuing, at every instant of time, its "shadow" 

f (z(t)) on the manifold ii. We find that all solutions of the system (1.1) are attracted to 

some compact set, i.e. to the attractor. The complexity of the "steady state modes" in the 

system (1.1) is naturally characterized by the dimension of the attractor. The principal 

result of this paper is represented by the estimate from above obtained for the dimension of 

the attractor and depending only on n (dimension of the target manifold) and on the Lipshits 

constants of the mapping f, and independent of the dimension Nof the phase space. An analog- 

ous result is obtained for a wide class of so-called weakly compressing systems. Suchsystems 

include, in spite of the multidimensional problem of pursuit, the Galerkin approximations to 

various evolution equations, and in particular the Navier-Stokes equations on a two-dimens- 

ional torus. 

The structure of the attracting sets can be as pathological for the system (1.1) as for 

the most general dynamic systems. Indeed, let us consider any system .z= v(z),z ERF contain- 

ing the absorbing sphere b. The system can be modified outside the sphere B soastoconvert 

it into a system of the form (1.1). To do this we write in the sphere B: f (z) = v (z) + 2, and 
let 11 = f (B). We extend the mapping f smoothly to the mapping RN--r1\, and consider the cor- 

responding system (1.1). Within the sphere B this system coincides with the initial system. 

This means that the pathologies which may be encountered in any dynamic system with an absorb- 

ing sphere, will also appear in the multidimensional problem of pursuit. 

Thus the attractor of the system (1.1) need not be a manifold or have a dimension in the 

classical sense. Various definitions of the dimension exist, which can be applied to any (or 

any compact) subset of the Euclidean space: topological (or inductive intr0ducedbyP.S. Uryson), 

metric (or Hausdorff) and entropic (introduced by L.S. Pontriagin and L.G. Shpirel'man and 

called by them the "metric order of the compact"). Let us depart for the time being from the 

exact definitions. From the physical point of view it is desirable to choose a such defini- 

tion of dimension which would allow, for any compact X belonging to RN, to obtainanestimate 

from above, with the dimension of X known, of the number of parameters defining uniquely the 

position of a point on X. RNis regarded here as a phase space, of the physical process and 

the parameters are its functions on the whole of R". This means that the dimension should 

characterize not only the internal properties of the set X, but also its position in RN. Let 

us narrow the problem and consider, as parameters, only the coordinate functions zi on the 

space RN. This yields the following formulation: to find the smallest dimension of the 

general position plane on which the set X is projected in 1:l correspondence. The answer 

should be expressed in terms of the dimension of X and depend on the meaning attached to this 

dimension. If X is a smooth manifold, then all dimensions listed above coincide with the 

classical and we have the Whitney lemma /4/, which states that a smooth manifold of dimension 

?z embedded in R" projects homeomorphically onto the general position plane of dimension 
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zn+ 1. The lemma remains valid when the n-dimensional manifold is replaced by a compact, 

entropically n-dimensional. The Whitney lemma is clearly false for the topologically n- 
dimensional compact. For example, the set of all points of the number space RNwith irrat- 
ional coordinates only has topological dimension zero, nevertheless it does not project in 
1:l correspondence on any hyperplane. It would be interesting to find out whetherthewhitney 
lemma holds for the Hausdorff n-dimensional sets. We also note that in the course of deriv- 
ing the numerical estimates for the dimension of the singular attractors (such estimates have 
appeared lately in greater and greater numbers), it is the entropic dimension which is dis- 
cussed as a rule. The present paper gives a simultaneous estimate from abovefortheHausdorff 
and entropic dimension of the attractors in weakly compressing systems. 

2. Formulation of the results. Definition. The system 

z'= U(X), r=RN (2.1) 

in the Euclidean space is weakly compressing if 
lo. It has an absorbing region B with compact closure into which all phase trajectories 

of the system arrive after positive time has elapsed. 
20. div v< 0 in B. 
The systems satisfying lo are often called dissipative. Let the eigenvalues of the quad- 

ratic form (v* (x) 5, g),, v* = (dvi/&,), I E B, 5 E Z’,B be equal to h, (X) > . . . > hN (z). 

Definition. The system (2.1) is called weakly compressing with constants (h, a, n) (A is 
real, cc is positive and n is natural) , provided that is satisfies the conditions lo and 2O of 
the previous definition, and for all I belonging to B h,(s),< h, h,,+t(z)< -a. Sect.3 givesthe 
definitions of the Hausdorff and entropic dimensions, and the fundamental result of thispaper 
is expressed by the following theorem: 

Theorem 1. A weakly compressing dynamic system with constants @,a, n) has a global at- 
tracting set the Hausdorff and entropic dimensions of which do not exceed the quantity C(h, 

a, n) 

C (h, a, n) < 16n (h + cc) (h + 54 0 (2.2) 

C (h, a, 4 < 4nh2 (1 + II, (I)) sea 

where *(h)+O as h+oo. 

Theorem 2. The system (1.1) in any sphere B 3 A is weakly compressing, with constants 
(L - 1, 1, n) where L = Lip&. 

For the Hausdorff dimension dimHM of th e attractorM the above estimate can be sharp- 
ened; if h, (4 + . . . + &(x)<O for all x E B, then dimHM< k for the system (1.1). This 
yields the estimate dimnM< Ln for the system (1.1). A related result but without a quantit- 
ative estimate, is obtained in /5/. 

Corollary. The system (1.1) has a globally attracting set the Hausdorff and entropic 
dimensions of which do not exceed the quantity C (L - 1, 1, n). In particular, we have 

C (L - 1, 1, n)< 16n L(L + 4) 

The multidimensional problem of pursuit is very specific , and we hope that the dimension 
of the attractor can be estimated in this problem more accurately than for the genera&weakly 
compressing systems. 

Hypothesis. The Hausdorff dimension dim& of the attractor A4 in the multidimensional 
problem of pursuit is estimated from above by a constant, depending only on dimension n of 
'the pursued" manifold and independent of the Lipshits constant of the mapping f. It may 
happen that dimHM< Kn for some K>O. 

The students of V.I. Arnol'd have constructed examples of the multidimensional problemof 
pursuit in which the attractor contains a region of the space RN, and the dimension of the 
pursued manifold is '=I3 N (D-N. Bernshtein) and IleN (V.A. Vasil'ev). This implies that in 
the above hypothesis K>Z. The linear substitution of time t'= at transforms the weakly com- 
pressing system with constants (1, a, n) into an analogous system with constants (h/u, 1, n). 
For this reason we shall only consider the case c = 1. 

3. Hausdorff and entropic dimensions. Both dimensions are determined for any com- 
pact subset of the number space. For the subsets of the k-dimensional manifolds with posit- 
ive k-dimensional Lebesque measure, both dimensions are equal to k. In the general case 
they can be expressed by a nonintegral number. Thus the Hausdorff and entropic dimensions of 
the perfect Kantor set coincide, and are equal to lnZ/ln 3. In the general case the entropic 
dimension may be larger than the Hausdorff, and cannot be smaller. 



292 

Next we pass to the exact definitions. Let KC RN be compact. 
pact K we shall understand, in what follows, 

Under the covering com- 
a finite collection of spheres the unionofwhich 

contains K. We denote by U,(K) the class of coverings of compact Kconsisting of spheres, 
of radius not greater than e. Let U E U, (K), U = {B,}, B, be a sphere of radius ry. We 
define for any d> 0 the d-dimensional volume of covering CT as 

Let us fix dand 8, and put 

%d(K) = uL;;KjV&) 
E 

Definition. We call the limit 

md (K) = lim mE,d (K) 
E-m 

the Hausdorff d-dimensional measure of the set K. 

Note. For any compact K the quantity m,. d W) I with fixed d, does not decrease monoton- 

uously with decreasing P. The infimum is taken over even less populated class of coverings. 

Therefore the measure Q(R) is defined for any d>O and can be equal to a positive number, 
zero or infinity. 

Definition. The Bausdorff dimension of the compact subset KC RN is denotedby diIXIHK 

and defined as follows. If md (K) = 0 for all d> 0, then dimnK = 0, otherwise 

dimnK = sup {d 1 md(K)# 0) 

The entropic dimension is determined in exactly the same manner as the Hausdorff dimension, 

except that instead of covering K with arbitrary spheres, we consider the coverings of Kcon- 
sisting of spheres of equal size. The class of all coverings of the compactK by singlesize 

spheres of radius not greater than e, will be denoted by V,(K). (Every cover of class Vz (K) 
consists of equal size spheres; different covers of the same class may consist of different 

spheres). The definition of entropic dimension is obtained by replacing everywhere in the 

Hausdorff dimension the class U, (K) by v,(K)- All proofs are carried out below for the 

Hausdorff dimension only. The proof of Theorem 1 for the entropic dimension is obtained by 

replacing the class of covers U,(K) shown above by V,(K). 

4. Volume distortion under the action of the phase flux of a weaklycompres- 
sing system. Below the k-dimensional volume of the smooth k-dimensional submanifolds 

M"C RN (with or without an edge) is assigned the classical meaning and denoted by V(M”). 
If II, T,RN is a k-dimensional parallelepiped, then V(II') represents its k-dimensional 
volume. 

Lemma 1. Let a vector field u satisfy all conditions of Theorem 1 at a = 1 and g:B-+ 
B denote the displacement along the phase curves of this field per unit time. Then for any 

k-dimensional manifolds MkC B,k> n (perhaps with an edge), we have 

I' (gM") _< ,++u-h~/ (M") (4.1) 

and for every so B 

II g, (4 II _( eh (4.2) 

Proof. Let us fix any s=B and let nkCZ',RN be any k-dimensional parallelepiped. 

The inequality (4.1) will be proved if we establish that 

V (g* (z) nk) < en(h+l)-kV (nk) (4.3) 

Below we shall neglect the explicit indication of the dependence on I. 

Proposition 1. Under the conditions of Theorem 1 we have 

V (g,‘n”) < (l-t I- 0 (t))“-” (1 -;~ ht 1~ 0 (t))" V (tlk) (4.4) 

II g,l /I < 1 -I- At + 0 (t) 

Proof of the proposition 1. Consider a plane P stretched over Up, and a restric- 

tion, of quadratic form (u.,k,E) imposed on this plane. Let {v', . . ..q")CPk be a normed basis 

composed of the eigenvectors of this restricting form, pj an eigenvalue corresponding to 11); 

1~~ > ,t2 2. >,pk, I” a cube with the ribs n', ., qk. Clearly, it is sufficient to prove the 
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inequality (4.3) for the particular case of II~=IK In this case F(Ik)= 1 and V(g,'Ik) Q U Ig,‘rl’I 
(the volume of the parallelepiped does not exceed the product of the side lengths). We further 
have 

gst = E + to, + 0 (t) 

and hence 
I g*f d I = 1 + t (u*rlj, rlj) + 0 (t) = 1 + tpj + 0 (t) 

From the Rayleigh-Courant-Fischer theorem /6/ we have pj<hj,therefore 

I g*f q3 I < 1 + a + 0 (0. i < n 
I g*’ 4 I < 1 - t + 0 WV i > n 

hence instantly follow inequalities (4.4) and the proposition is proved. Lemma 1 follows at 
once from the proposition. Let us put t = i/v, vis a natural number. Since g = (gllv)v and 
the volume distortions multiply on superposition, we obtain 

Passing to the limit as v +co,we obtain the inequality (4.3). The inequality (4.2) isobtain- 
ed in the same manner from the estimate b*E* E) < 1 G, E) I and this completes the proof of 

Lemma 1. 

Note. The second assertion of Lemma 1 implies that when h<~, then the transformation 
of the phase flux of the system (2.1), g:B+B is compressive. In this case the set M con- 
sists of a single point, dim,M=U and Theorem 1 holds trivially. Therefore is what follows, 
h > 0. 

5. Estimate of the Hausdorff dimension of the attractor. Theorem 1 now fol- 
lows at once from the following lemma. 

Lemma 2. Let g be a transformation of the sphere B into itself, with the derivative 
mapping g, (z) satisfying the inequalities (4.2) and (4.3) for every ZEB. Then the setM = 
B n gB n g2B C-1 . . . is nonempty, compact, and dimHA is determined by the inequalities (2.2) 
by setting in them a = 1. 

Note. The compactness and nonemptiness of Mare obvious. If we assume in additionthat 
M is a smooth manifold, perhaps with an edge, then dim M-s n(h + 1). Indeed, gM = M, there- 
fore V(gM) = V(M). On the other hand, if d = dimM, then by virtue of the inequality (4.1) 
we have 

V(N)< &+1&d JJ (M) 

Therefore (h + l)n- d> 0, Q.E.D. The proof of Lemma 2 follows from the following two pro- 
positions. 

Proposition 2. Let the conditions of the lemma hold. Let d be a positive number, 
XE B and Q be a unit sphere in T,B. Let also R<l exist such that for every XC=B a 
covering Uof the ellipsoid g,(x)B with spheres of radius R can be constructed, and 

Then dimHM< d. 
V, (u) < R 

Proof. We put 6= 1 -R and construct, for every sufficiently small E and every cover- 
ing UEUE(M) I will be constructed a covering U'E Uze(M) for which 

(5.1) 

From the definition of the Hausdorff measure it follows that in this case md @f) = 0, which 
means that dimHM<d. First we describe the method of selecting E. Let E' E (0, I) be any 
number for which 

(1 + E')d (1 - 8)d < 1 - 6d/z 

The number E is chosen small enough to ensure that for every ZE.B and h E RN , with lhl<~, 
the following inequality holds (R is the same as in Proposition 2): 

I k’ (2 + h) - g (2) - g, (4 h I< e’R 1 h 1 (5.2) 

Below, every sphere or ellipsoid with center at the point ZE RN, identifies with a sphere 
or an ellipsoid of the space TxRN with center at zero, with help of the mapping RN - TxRN. 

y I-E= y-z. Let now U E U,(M), CJ= (ByJv = 1, . . . . x). dv be a sphere of radius rV with center 
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at zy . For every ellipsoid E,- g,(z,)B,(with center g(.z,)) there exists a covering Cy with 
spheres of radius l?r, such, that 

V, (U”) < (1 - 6) rvII (5.3) 

This follows from the conditions of Proposition 2 and the concepts of similarity. We replace 

now every sphere of the covering c + by a concentric sphere of radius (l+e')Rr, and denote 

the resulting covering by U'V. By virtue of the inequality (5.21, Vv is a covering of the 

compact @,. We denote the totality of all spheres forming the coverings U",Y = I...., x, by 

u'. Obviously, U' is the covering of the compact gM= M, and it satisfies the inequality (5.1) 

by virtue of the inequalities (5.2) and (5.3), and this proves Proposition 2. 

Proposition 3. Let A : RN-+RN be a linear operator and let also a nonnegative A and 

natural n exist such, that 11 A 11 Gee” and for every k-dimensional parallelepiped 11" i Rx, 

k>n 
V (AIIk) < en(8.+l)-h- V (n’) 

Then for every d satisfying one of the inequalities 

d> lcin (h i- l)(h + 5) (5.4) 

d > 4nh2 (1 i- + (A)) 

there exists a number R<l and covering U of the ellipsoid AQ by spheres of radius K 

which TId (U),< R. Here Q is a unit sphere in R”.. The function JI is deiined below by 

formula (5.6). Here we only note that $((i,)-+O as h-+ 00. 

Proof. The covering Uis constructed as follows. The ellipsoid AQ is enclosed 

the product of two spheres, sphere Q1 of large radius and small dimension, and sphere Qz 
small radius and large dimension. First we find the economic covering of the sphere Q, 
blow up the covering slightly and transform it into the covering of the product Q1 X Q2. 

for 

the 

nto 

of 

then 
Let 

us pass to detailed construction, and take an arbitrary Q ~(e-', l).Let PI denote aplane stretch- 

ed onto all semiaxes of the ellipsoid AQ not smaller than p, and I', the orthogonal comple- 

ment to P,. Let QICP, be a sphere with center 0 and radius ,A, and Qz CPZ a sphere with 

center 0 and radius p.. Clearly, AQcQ~ x Qz. We now put m= dimP, and estimate m in terms 

of p,)‘ and II. We take, for every one of the m largest semiaxes of the ellipsoid AQ its 

preimage of unit length. Let IIm represent a parallelepiped stretched over these preimages. 

Clearly, V(V)< 1. By virtue of the condition and definition we have 

[>"< I' (A$")< $G++m 

and hence 

The lemma which follows is easily derived from the Rogers theorems /7/, therefore its proof 

is not given. 

Lema 3. The m-dimensional sphere of radius R can be covered by spheres of radius r, 

the number of which does not exceed the quantity 

N(m,R,r)=~(n(,)+1) 

where e(1) =1, 8 (m) = m (lnm + lnlnm + 5) for m > 2. 
We choose the number r in such a manner that PZ+ +<I and call all pairs (p, r) : p E (e-l,, 

1),p2+r2<1 admissible. We cover the sphere Q1 by spheres of radius r the centers of which 

lie in the plane P, and their number estimated using Lemma 3. Next we replace every sphere of 

the covering by a concentric sphere of radius R- (p2f r?'/'and denote the resulting collection 

of spheres by U(~,I.). By the Pythagoras theorem, U(p,r) is a covering of the compact QA1 x QI. 
We have 

Vd (U (p, r)) < NRd, N = N (m, ?, r) 

therefore 

v,(u(p,r))<R for d>$-$+l (5.5) 

The right-hand side of the latter inequality is estimated in terms of n,h,p and'r, there- 

fore by virtue of the proposition 2 any choice of the admissible pair p and r yields an esti- 

mate from above for dimHM. This completes the proof of Theorem 1 in the following, weaker 

formulation: under the conditions of Theorem 1 there exists an estimate from above for dimEM, 

in terms of a quantity depending only on ilia and n. To prove this weaker theorem we no 

longer need Lemma 3, and the covering u(p, r) need no longer be taken as the "almost optimal". 
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Let us now proceed to the exact estimates. We have 

lnN=m[ln(ei+2r)-l~r+1"(e(~~++1) ] 

Simple calculations yield 

In (e (m) + 1) <'/,m, m = 1, 2, . 
ln(e~+22r)<h+1,h>,O,r<'/, 

therefore for r<'i2 we have 

Let us construct the covering u for the case when d satisfies the first inequality of (5.4). 
We put U = (I (p, r) with P = r = e+. Clearly, 

0 (& 1, e-'iz,e-'/2) = 4n (1;+_1/;;+5) <16n(h+ 1)(h+ 5) - 1 

By virtue of the estimate (5.5), v,(u) <R, and this proves the first part of the proposition. 
We define the function Q by the following equation: 

Q (n, h, e-'hv [e (n + 1)1-'!') + 1 = 4nh2 (1 + $ (h)) (5.6) 

Clearly, $(1)-O as h-m. Let d satisfy the second inequality of (5.4) containing this func- 
tion $. We put U = U (p, r) , with p = e-l/', r = [e (J. + l)l-"T. Then by virtue of the estimate (5.5) 
Vd(U)<R and this proves the proposition 3, and together with it Lemma 2 and Theorem 1. We 
note that with increasing h it becomes convenient to cover the sphere Q1 with spheresofsmall 
radius r. 

6. Proof of Theorem 2. Let u(m)=f(~)-X. Then we have (v* (z)& E) = (f* (m)& E)- (5, 
E) < (L - 1) (5, E), i.e. h, (x) < L - 1. Further, let K, = Ker f* (2). When ~EK, , we have 

(v* (m) E* E) = - (5, E) 
Since codim K,,< n, not more than n eigenvalues of the form (u, (I) E, E) exceed -1, i.e. k,,+l (x) 

< -1, Q.E.D. 
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